植物生長調節劑在檬果栽培上之應用

張林仁 林嘉興 林信山

台中區農業改良場

摘 要

本省樣果栽培之首要問題爲產期過於集中,爲分散產期可應用提早產期及延後開花之方式。在應用抑制樣果營養生長,促進花芽形成提早開花方面,Ethrel、Alar、CCC及MH都有效果,但其效果常因植株樹勢、品種及氣候因素等而不易掌握。一種新開發的生長抑制劑paclobutrazol被應用於樣果,發現抑制效果甚佳,可以提早開花及採收約3個月,繼續之試驗正進行中。而在延後樣果產期方面,除了摘除花穗促成再生腋花穗而延開花開期外,GA3也被應用於延遲開花處理,但其適用劑量則需深入探討。

前 言

原產於熱帶的樣果係深根性大喬木,生育非常旺盛,生長期中必需有乾旱或稍冷涼的氣候,尤其是較低的夜溫及相對濕度,才能使新梢自然停止生長,促進花芽形成。因此,在高溫乾燥的條件下,若枝梢生長受限制,就容易開始花芽分化。熱帶地區如菲律賓,盛產樣果,因乾旱季節長達6個月,加上日照充足及高溫,很適合抑制新梢的營養生長及促成花芽的形成,所以調產期相當容易,曾有以硝酸鉀處理而成功地誘導開花之例子^(6,7)。最近墨西哥及澳洲也有人利用硝酸鉀促成提早開花^(13,26)。Mosqueda Vazquez及Avila Resendiz⁽¹³⁾認爲硝酸鉀的作用是促進乙烯的生合成而促成提早開花。但也有報告指出硝酸鉀無促進早花的效果^(5,26),這可能與品種特性及地域、氣候有關。

果樹營養生長期間,以修剪、環狀剝皮、樹幹刻傷、斷根、乾旱、浸水等園藝技術促進生殖生長,爲常見的調節果樹花期方法,但由於各種果樹之開花習性或生理條件不同,個種方法並非均可適用。樣果利用環狀剝皮,在印度有環剝後施用生長抑制劑達到提早開花之報告(17,18),在澳洲有環剝後噴施KNO3提早開花之報告(26)。而在本省,農民以環狀剝皮、樹幹刻傷等處理後,雖可提早開花,但常造成隔年結果,樹勢衰弱或著果率低,是以該項方法無法廣受採用(2)。除了上述利用硝酸鉀及園藝耕作處理等可以有效抑制營養生長,使樹體轉變爲生殖生長外,要達成調節樣果產期,也可以使用植物生長調節劑來達成控制生長提早開花(1,2,8,9,14,15,17,19,22)。而摘除花穗或GA處理造成延遲開花(1,3,4,19,21,23),也是分散產期的方法。

基於本省的氣候條件適於檬果之生長,而且消費市場也有產期分散之需求,台中區農業改良場於1982年起開始進行樣果產期調節之試驗。首先於1982年在南投縣信義鄉利用環狀剝皮及施肥量控制等方法,配合葉面施肥及適當的施用生長調節劑,進行觀察。初步發現環狀剝皮雖有輕微抑制徒長效果,但對樹勢有所損傷恢復緩慢,兩相比較之下不能適用。而以土壤施肥控制等方法處理者,可以使凱特檬果提前於10月下旬起萌芽開花,然而因氣候冷涼導致形成無籽果。但是產期調節之可行性已初現端倪。此後在台中縣新社鄉以愛文檬果爲材料,嘗試以Ethrel,Alar及CCC等生長調節劑配合肥培管理,也可提前開花⁽²⁾,但仍因天冷而結無籽果。1985年起,改在屏東地區以在來種檬果爲材料,並試用paclobutrazol爲抑制劑,成功地

將產期提前3個月。本文就樣果栽培上被用來抑制生長提早開花及延遲開花方面之藥劑之試驗做一扼要介紹。

內 容

一、Ethrel、Alar、CCC之應用於提早檬果花期

在利用植物生長調節劑控制營養生長,促使檬果花芽形成,提早開花方面,先後有很多學者利用Ethrel(ethephon, CEPA),Alar(SADH, B-9, daminozide),CCC(Cycocel, chromequat)及MH等處理而得到可觀的效果 $^{(1,2,8,9,14,15,17,19,22)}$,其中尤其以Ethrel被使用的較多,因爲它能釋放乙烯而抑制了營養生長。

Suryanarayana及Rao(1978)⁽²²⁾以Alar及CCC噴施於"Mulgoa"樣果,發現可相當地提高開花枝比率,而在整個藥劑施藥期間二種藥劑均可提高葉及莖之蔗糖、澱粉、RNA及蛋白質之含量,尤其是在花芽形成期間或稍早時期更爲明顯,他們認爲這些物質的量的增加似乎是作用於增加開花率。Ryugo(1986)⁽²⁰⁾指出Alar及CCC阻凝了GA的生合成,因此有利於花芽之形成;所以,似乎任何抑制枝條伸長的處理都有利於花芽形成。

Rath及Das(1979)⁽¹⁷⁾利用環狀剝皮然後噴施不同藥劑,可產生不同之枝條抑制及提早開花之結果(表1),其中以環剝加400ppm Ethrel(CEPA)可提早16天開花。

表 1. 環狀剝皮及生長抑制劑對"Langra" 檬果生長及開花之效果(17)

Table 1. Effect of ringing and growth retardants on growth and flowering of mango, 6 months from spraying

Treatment	Lengthe of shoot (cm)	Diameter of shoots	Number of leaves/	Percentage of flowering	Number of dyas to
		(cm)	shoot	shoots	flowering
Control	8.8	0.16	8.5	8.0	130.6
Ringing alone	3.2	0.22	6.0	42.6	122.0
Ringing + CEPA 400mg/l	3.5	0.24	4.5	52.0	114.6
Ringing + alar 3000mg/l	4.2	0.20	4.5	34.0	126.6
Ringing + cycocel 3000mg/1	3.1	0.18	5.0	62.3	124.4
Ringing + MH 1500mg/l	3.0	0.27	4.5	39.1	128.4

然而這些藥劑的使用量及使用效果因使用之品種及地區而有不一致之效果。歐及顏(1985)⁽⁵⁾ 報告指出噴施上述藥劑無法誘致開花,而以點滴注射處理時甚至會造成頂梢枯死及流膠等藥害。筆者等⁽²⁾以Cycocel,Alar及Ethrel等處理愛文檬果得到提早花芽形成及開花之效果,而施用在於來種樣果則造成落葉。因此這些藥劑的使用必須小心地測試及觀察,否則不容易掌握預期效果⁽²⁾。

二、以paclobutrazol抑制徒長提早開花

Paclobutrazol為新開發的生長抑制劑,在果樹方面最先被應用於溫帶果樹之桃及蘋果等 ⁽²⁴⁾,不論是葉面噴施或地區灌注都有降低枝條生長、增加花數及著果之效應。而在亞熱帶的

柑桔類使用paclobutrazol也可減低營養生長勢及縮短枝條及節間之作用^(10,12)。至於應用在檬果方面,則尚未有報告提出。

筆者等在1986年6月間,試以paclobutrazol(簡稱PB)及CCC處理於在來種樣果,經3個月後,在9月底即已形成花芽,並開始陸續抽穗開花。在對抑制枝條生長方面,PB及CCC均可使枝條縮短,並縮短節間長度(表2)。而對促進開花方面,PB之4種處理在10月30已達到50%以上的抽穗率,以每株20g地面灌注效果最好,達78.8%,1000ppm葉面噴施及每株40g地面灌注次之,而CCC 700ppcm處理則有37.5%,效果尚稱良好(表2),PB處理株在1987年2月上旬開始採收,較正常產期提早約3個月。繼續之觀察結果發現,PB以地面灌注者其抑制效果雖較晚出現,但較持久,噴施者則抑制效果出現快而稍早解除。根據Quinlan及Richardson(1986)(16)之試驗指出,PB以多次低濃度(low-rate)噴施,較一次施用高劑量之控制效果長而有效。因此paclobutrazol應用於樣果之適當用量及施用法尚待進一步試驗。

表 2. 植物生長調節劑對在來種樣果之枝條生長抑制及促進花萌芽之效果

Table 2. Effect of PGRs on inhibition of shoot growth and promotion of flower bud sprouting in indica mango.

			CCC						
		Foliar spray		Siol drench		Spray			
	C.K.	500ppm	1000ppm	20 g.a.i.	40 g.a.i.	700ppm			
Shoot growth parameters at $08/26/1986$									
Shoot length, cm	14.3	11.6	12.0	11.6	11.9	12.1			
Leaf unber	12.6	12.0	11.7	12.0	11.9	12.0			
Internode length, cm	1.17	0.98	1.07	0.90	1.01	1.07			
% Flower bud sprouting									
10/17/1986	5.0	46.3	46.3	68.8	57.5	32.5			
10/30/1986	13.8	50.0	66.3	78.8	65.0	37.5			

三、延遲檬果開花及延後產期

 GA_3 應用於果樹之延後開花有很好之效果 $^{(25)}$,應用於檬果也有很多報告 $^{(1,11,19,23)}$,但各人用的劑量不一樣,效果也不一。Kaohru等 $(1972)^{(11)}$ 用 10^{-1} ~ 10^{-4} M(3500~3.5ppm) GA_3 可延遲花芽抽出達2個月以上;沈及黃 $(1980)^{(1)}$ 用50ppm GA_3 即可延後花期約5個星期;Rawash等 $(1983)^{(19)}$ 用500~3000ppm也達到抑制開花效果;而 $Tomer(1984)^{(23)}$ 用25~200ppm抑制開花效果相似,因此 GA_3 應用於延遲檬果開花之劑量及使用方法尚待探討。然而值得一提的是,印度有利用摘除花穗促使再生脓花穗而延後花期的例子 $^{(21)}$,國內也有研究愛文、凱特、海頓等品種檬果摘花延後花期 $^{(1,3,4)}$,也得到肯定的結果。因此在延遲開花方面,似可進一步探討除花穗技術及調節劑之應用,以期尋找一個更有效的延後產期的方法。

結 論

在本省樣果產業的最大問題就是產期過於集中,而致盛產期價賤傷農,最好的解決方法就是分散產期,而分散產期可分提早及延後兩種。目前提早產期除了以傳統的樹幹刻傷、環狀剝皮等方式外,就屬以植物生長抑制劑來控制植株營養生長,促成花芽形成而提早爲最常用的處理方式。然而一些抑制劑如Ethrel、Alar、CCC及MH等,其抑制效果因樹種、樹勢、氣候等因素而不一致,很難求得一正確而肯定的施用方法。最近筆者以paclobutrazol進行試

驗,發現效果甚佳,然而此藥爲新開發者,進一步的測試及藥緎之了解尚待研究。因此,在 樣果的營養生長期間,如果能利用肥培管理技術,如添施有機肥料、營養劑、葉面施肥等, 促進樹勢強健而不徒長,再施以適當的生長抑制劑以控制多雨氣候所造成之旺盛生長,如此 促進花芽形成,提早開花,應是可行而值得採討的。至於延遲開花延後產期,除了摘除花穗 後利用再生花穗結果已進入實用階段外,應用GA延遲開花則尚需進一步探討適用之劑量及方 式。

引用文獻

- 1. 沈再木、黃弼臣 1980 化學藥品及剪除花穗對樣果花期調節及結果之效應 中國園藝 26(2,3):61~70。
- 2. 林嘉興、張仁林、林信山 1987 檬果產期調節之研究 I.藥劑處理抑制新稍營養生長及促進 花芽萌芽試驗(張林仁編 園藝作物產期調節研討會專集) 台中區農業改良場特刊第10號 p.107-117。
- 3. 張明聰、劉銘峰 1987 摘除花穗延長檬果產期之研究(張林仁編 園藝作物期調節研討會專集) 台中區農業改良場特刊第10號 p.119-128。
- 4. 許仁宏 1983 檬果腋花穗之誘引 中華農學研究 32(1):32-38。
- 5. 歐錫坤、顏昌瑞 1985 高溫期間植物生長調節劑對愛文檬果生育之影響(林信山編 果樹產期期調節研討會專集) 台中區農業改良場特刊第1號 p.137-143。
- 6. Bondad, N.D. and C.J. Apostol. 19793 Induction of flowering and fruiting in immature mango shoots with KNO₃. Curr. Sci. 48(13): 591-593.
- 7. Bondad, N.D. and E. Linsangan. 1979. Flowering in mango induced with potassium nitrate. HortScience 14(4): 527-528.
- 8. Chacko, E. K., R.R. Kohli, R. D. Swamy, and G.S.Randhawa. 1974. Effect of (2-chloroethyl) phosphonic acid on flower induction in juvenile mango (*Mangifera indica*) seedings. Physiol. Plant. 32:188-190.
- 9. Chen, W. S. 1985. Flower induction in mango (*Mangifera indica* L.) with plant growth substances. Proc. Natl. Sci. Counc. B. ROC 9(1): 9-12.
- 10. Delgado, R., R. Casamayor, J. L. Rodriguez, and R. Fajardo. 1986. Paclobutrazol effects on oranges under tropical conditions. Acta Hort. 179:537-544.
- 11. Kaohru, R.B., R.N. Singh, and E.K. Chacko. 1972. Inhibition of flowering in *Mangifera indica* L. by gibberellic acid. Acta. Hort. 24:206-209.
- 12. Monselise, S.P. 1986. Growth retardation of shoot and peel growth in citrus by paclobutrazol. Acta Hort. 179: 529-536.
- 13. Mosqueda Vazquez, R. and C. avila Resendiz. 1985. Floral induction of mango with KNO₃ applications and inhibition by AgNO₃ or CoCl₂ application. Hort. mexicana 1(1 Abstr. cited) : 93-101. (Abstr. cited from: PGR Abstr.13(11) : 2086, 1987.)
- 14. Mukhopadhyay, A.K. 1976. A note on the effect of growth retardants and L-methionine on flowering of mango (Mangifera indica L.). Hort. Abstr. 48(3): 254.
- 15. Pal, R.N., K.L. Chadha, and M.R.K. Rao. 1984. EFFect of different plant growth regulators and other chemicals on flowering behaviour of manog. Indian J. Hort. 41(1/2):8-15.

- Ouinlan, J.D. and P.J. Richardson. 1986. Uptake and translocation of paclobutrazol and implication for orchard use. Acta Hort. 179:443-451.
- 17. Math, S. and G.H. Das. 1979. Effect of ringing and growth retardants on growth and flowering of mango. Acta Hort. 10:101-104.
- 18. Rath, S. and G.C. Das, and R.L. Singh. 1982. Manipulation of flowering in mango by forcing the dormant buds. Bangladesh Hort., India 10(1):39-41. (Adstr. cited from: PGR Abstr. 10(7):854, 1984)
- 19. Rawash, M.A., A. Al-Hammady, S. El-Nabewy, A.S. Khalifa, and H. El-Masry. 1983. Regulation of flowering and fruiting in mango trees by using some growth regulators. Ann. Agri. Sci., Ain Shams Univ., Egypt 28(1):227-240. (Adstr. Cited from: PGR Abstr. 11(9):1183, 1985.)
- 20. Myugo, K. 1986. Promotion and inhibition of flower initiation and fruit set by plant manipulation and hormones, a review. Acta Hort. 179:301-307.
- 21. Singh, R.N., P.K. Majumder, D.K. Sharma, G.C. Sinca, and P.C. Bose. 1974. Effect of de-blossoming on the productivity of mango. Sci. Hort. 2:399-403.
- 22. Suryanarayana, V. and V.N. Madhava Rao. 1978. Effect of trowth retardants on certain biochemical changes in relation to flowering. Indian J. Plant Plysiol. 11(1)1-6.
- 23. Tomer, E. 1984. Inhibition of flowering in mango by gibberellic acid. Sci. Hort. 24(3/4):299-303.
- 24. Tymoszuk, S. and A. Mika. 1986. Gromth control of apple trees with Cultar and Alar. Acta Hort. 179:195-198.
- 25. Webster, A.D. 1986. Delaying flowering and improving the yields of plum cultivars with ethephon and gibberellic acid sprays. Acta Hort. 179:171-172.
- 26. Winston, E.C. and R. M. Wright. 1986. Mango flower induction: ethephon, potassium sdtrate and cincturing. In: First Australian mango research workshop. Proceedings. Meldourne, Australia, CSIRO (1986) 202-210. (Abstr. cited from: Hort. Abstr. 56(12):10166, 1986.)

討 論

林宗賢問:

- 1.GA處理以後,根據曾夢蛟教授以前做過的結論是促進雄花產生?
- 2.經抑制處理以後,葉片數的數目是否會減少吧?光合作用的速率是否會受影響?

張林仁答:

- 1.這只是初步觀察,未詳細調查雄花數。
- 2.調查的結果葉片數是沒有差異,但節間較短,葉片密集,可能會影響光合速率。

陳敏祥問:

- 1.處理之後,果實到成熟的階段與對照組的差異如何?是否一樣?
- 2.果實到成熟所需的日數,處理組與對照組是否一樣?看起來對照組的果實果尖好像未 長出來,都是斜斜的,是否生育期較短?

張林仁答:

- 1.有差別,果形是比較小,但沒有什麼差異,因在較冷時,酸度會稍爲高一些。
- 2.實驗區有疏果,所以果實大小沒有差異,開花及採收皆提早二個月。

THE APPLICATION OF PLANT GROWTH REGULATORS ON CULTIVATION OF MANGO

Lin-Ren Chang, Jia-Hsing Lin and Hsin-Shan Lin

Taichung District Agricultural Improvement Station

ABSTRACT

The harvest season of mango in Taiwan is concentrated between May and September. There are two ways extend the harvest duration, one is to enhance floweing for earlier harvest and the other is to delay flowering. To inhibit vegetative growth and enhance fower bud formation, the application, the application of Ethrel, Alar, CCC and MH give positive effects, but the results depend on the tree vigor, variety an climate condition, and it is difficult to control. The application of paclobutrazol on mango gave an excellent inhibitive effect which got a harvest of 3 months earlier. To delay harvest of mango, the de-blossoming technique induce the axillary flower buds, and GA_3 treatments also delay flowering but the proper dosage needs further experiment.