亞洲國家稻米生產概況

一、前言

亞洲是全球面積最大(約占30%)、人口最多(近40億人,約65%)的一個洲,其栽培稻米的總面積亦最多,約占全球的90%。亞洲栽培稻作的地區中,具有充沛降雨之季風氣候型態的國家幾乎都是生產稻米的大國,譬如中國、印度、印尼等國家。一般將亞洲區分為中亞、東亞、南亞、東南亞、西亞及北亞等地區,除北亞的俄羅斯並無栽培稻作外,另5個地區均可生產稻米,我國即位於東亞地區。本文介紹亞洲地區稻作栽培的概況,提供國人對亞洲各國生產稻米的了解,並助益於國產稻米的競爭力。

二、亞洲的地理環境與稻米生產概況

依據聯合國國際糧農組織(FAO)的統計,亞洲地區之稻米栽培收穫總面積由1961年的10,695萬公頃急速增加至1975年的12,799萬公頃,之後至1987年的總面積則平緩維持在12,598~12,958萬公頃,再由1988年的13,026萬公頃平緩增加至1998年的13,641萬公頃,1999年急增至14,042萬公頃,之後逐年下降至2003年的13,276萬公頃,再由2004年的13,365萬公頃增加至2008年14,114萬公頃的最高峰,之後又下降至2010年的13,655萬公頃。由50年的資料中,以1999年的14,042萬公頃、2008年的14,114萬公頃及2009年的14,094萬公

頃為史上前三大的栽培總面積紀錄。稻米 總產量則由1961年的1.99億公噸至1971 年的2.92億公噸,1981年的3.73億公噸, 1991年的4.75億公噸,2001年的5.46億公 噸,再至2010年的6.07億公噸,幾乎呈現 每10年增加1億公噸的穩定上昇,其中以 2008~2010年間的6.25、6.19與6.07億公噸 分別為史上最高的三大總生產量。單位面積 (公頃)稻穀產量由1961年的每公頃1.86公 噸至1971年的2.38公噸,1981年的2.88公 噸,1991年的3.61公噸,2001年的4.00公 噸,再至2010年的4.45公噸,呈現穩定增加 的趨勢,但每10年的增進幅度不太相同,以 1981~1990年間與2001~2010年間分別每公 頃增加0.73與0.53公噸較高,而單位面積產 量最高的三大年度分別為2008~2010年間的 每公頃4.43、4.39與4.45公噸(圖1)。

就亞洲稻米總生產量與單位面積產量而言,一般都呈現直線增加的趨勢,而栽培總面積在1961至1975年間呈現較大的增加幅度,其次則在1988至2000年間,其它時期僅以緩慢的速度增加。因此,亞洲稻米總產量的增加,早期應係栽培總面積增加及肥料與灌溉的改進為主,後期則以品種改良與栽培改進相輔相成之貢獻。

依據FAO的調查,2007年亞洲總人口數約40億人,其中以南亞地區的16億人最多,其次為東亞的15億人。亞洲每人每年平均消費穀物的量約156公斤,其中白米消費

將近50%。亞洲地區以東南亞等國每人消費 白米最多,高達131公斤,約占其穀物量的 78%,其次則以東亞及南亞地區消費白米量 約占50%左右,而中亞及西亞地區之白米消 費量較低。顯見亞洲人民確以稻米為主食, 但在各地區因其稻米生產的優劣,而影響人 民對稻米的消費,中亞及西亞地區的地理環 境及氣候條件顯然影響其稻米的生產及消費 (表1)。

Asia

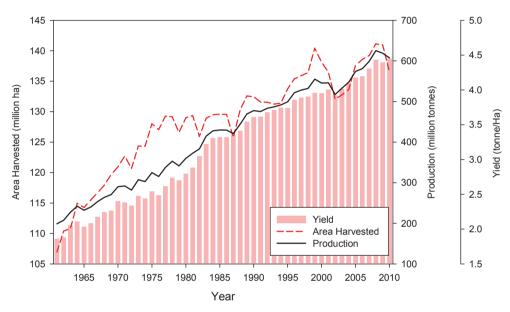


圖1.1961~2010年亞洲稻米栽培總面積、總生產量與單位面積產量

表1. 亞洲各分區人口、穀類與白米消費量(2007年)

地區	國家(數)	人口 (干萬)	平均消費量 (公斤/每人每年)			
70 <u>E</u>			索工类頁	白米	白米/穀類(%)	
亞洲		396.4	156.3	77.9	49.84	
中亞	哈薩克等5國	5.9	190.7	6.7	3.51	
東亞	中國等6國	153.8	148.9	75.0	50.37	
南亞	印度等9國	161.7	154.5	72.1	46.67	
東南亞	印尼等11國	56.4	167.4	131.0	78.26	
西亞	土耳其等18國	18.6	188.6	13.8	7.32	

由FAO之2010年亞洲稻作栽培面積、生產量與單位面積產量的資料(表2)顯示,栽培總面積約1.37億公頃,其中南亞、東南亞及東亞等三地區係主要生產區域,稻作栽培面積分別約5.4、4.9及3.3仟萬公頃,分別約占亞洲總面積的39.9、35.5及24.3%。亞洲稻米總產量達6.07億公噸,亦以前述之三地區為主要產區,皆達總產量的30%以上。就亞洲國家而言,中國、印度、印尼、孟加拉、越南、緬甸、泰國、菲律賓、日本及柬埔寨等國係主要生產稻米大國(表3),其中的中國及印度兩國之稻米生產量分別高達1.97及1.21億公噸。通常以生產稻米為主的國家也是消費稻米的

大國,譬如:越南人的年均消費白米量約 166公斤、緬甸人則大約吃了157公斤、菲律賓人消費130公斤左右、泰國人則消費約 100公斤(本刊前一章:表4)。其中有趣的是,泰國係最大的稻米輸出國,而菲律賓是最大的進口國。泰國稻田多、人口少、消費較少,稻米生產剩餘多,雖然單位產量不高,但生產之茉莉香米普受歡迎;巴基斯坦亦類似泰國,生產米但少吃米,且主要生產之Basmati香米甚受歐洲歡迎,因此巴國的稻米輸出量也大;菲國的水田面積平庸,但人口多、消費米也多,且稻米單位產量亦不高,年總生產量僅夠與年消費量打平,更何況菲國常遭遇極端氣候的威脅。

表2. 亞洲各分區收穫面積、產量與單位面積產量(2010年)

			<u>工主八十四四只工</u>		
地區	收穫面積(公頃)		生產量(單位面積產量 (公斤/公頃)	
- 5_	總面積	比例(%)	總面積	總面積	白米/穀類(%)
亞洲	136,550,538	100.00	607,337,398	100.00	4,448
中亞	241,254	0.18	822,904	0.14	3,411
東亞	33,206,974	24.32	216,051,000	35.57	6,506
南亞	54,441,967	39.87	188,556,290	31.05	3,463
東南亞	48,511,763	35.53	200,887,445	33.08	4,141
西亞	148,580	0.11	1,019,759	0.17	6,863

表3. 亞洲稻米生產量前十大國家(2010年)

序號	國家	生產量(萬公噸)	序號	國家	生產量(萬公噸)
1	中國	19,722	6	緬 甸	3,320
2	印度	12,062	7	泰國	3,160
3	印尼	6,641	8	菲律賓	1,577
4	孟加拉	4,936	9	日本	1,060
5	越南	3,999	10	柬埔寨	825

亞洲地區單位面積稻穀產量的表現,由於各國的品種、氣候、灌溉、栽培環境、投入資材等條件各異,自然無法相比較。以菲律賓的國際稻米研究所(International Rice Research Institute, IRRI)常採用之灌溉稻(Irrigated)生態系統、看天田低地稻(Rainfed Iowland)生態系統、陸稻(Upland)生態系統、深水稻(Deepwater)生態體系等四大栽培生態系統而言,各栽培系統的產量各異,以灌溉稻系統的產量最高,陸稻生態系統產量最低。東亞地區的灌溉稻系統較發達,因此其單位產量的6,506公斤,明顯高於中亞、南亞及東南亞等地區的表現(表2)。

亞洲主要生產稻米國家之中,以日本、 巴基斯坦、中國及南韓等國家之灌溉稻系統 所占比例較高(86~100%),泰國及柬埔 寨的看天田系統所占比例高達75%左右, 印度及印尼的陸稻系統所占比例仍有10% 以上,深水稻栽培系統的比例以孟加拉的 11%居多,栽培系統在各國的生產比例(表 4) 各異,自然影響該國的單位面積平均產 量及總生產量。若以我國2010年的單位面 積產量5.95公噸為基準,高於此產量水準 的亞洲國家有土耳其、中國、日本及南韓 等國家,以十耳其的每公頃稻穀產量8.69 公噸最高(表5)。此外,亞洲主要生產稻 米國家之流行品種(表6),除東亞(中、 日、韓、臺)各國具有本國研發品種外,其 他國家則多種植IRRI提供之IR品種,因此 IRRI對亞洲的貢獻相當顯著。另,印度主要 品種SWARNA之種植面積達12%;泰國之 RD6係長糯白米品種,種植面積占28%, KDML105係有名之茉莉香米品種,種植面 積占23%,兩品種亦是泰國輸出稻米之主 要品種;巴基斯坦種植的稻米品種高達9成 以上係屬於Basmati之類的香米,主要品種 Super Basmati的種植面積高達60%。

表4. 亞洲主要生產稻米國家的栽培系統分布(2001年)

國家	面積	栽培系統(%)				
	(1,000公頃)	灌溉稻	看天田	陸稻	深水稻	
亞洲	135,657	57	33	7	3	
印度	44,500	50	35	12	3	
中國	28,587	93	5	2	0	
印尼	11,700	54	35	11	0	
孟加拉	10,900	32	50	7	11	
泰國	9,800	20	74	2	4	
越南	7,500	53	39	5	3	
緬甸	6,500	30	59	4	7	
菲律賓	4,065	67	30	3	0	
巴基斯坦	2,250	100	0	0	0	
柬埔寨	1,821	16	75	1	8	
日本	1,700	100	0	0	0	

表5. 亞洲單位面積稻穀產量前十大國家(2010年)

序號	國家	產量(kg/ha)	序號	國家	產量(kg/ha)
1	土耳其	8,690	6	越南	5,322
2	中國	6,549	7	塔吉克	5,174
3	日本	6,511	8	印 尼	5,014
4	南韓	6,506	9	北韓	4,256
5	臺灣	5,950	10	孟加拉	4,183

表6. 亞洲主要生產稻米國家之流行品種(1998年)

或	家	品種名稱	命名年代	起源國	種植面積比率(%)
EΠ	度	SWARNA IR36	1982 1981	印度 IRRI	12.2 5.5
EΠ	尼	IR64	1985	IRRI	16.0
孟力	加拉	BR11 BR14	1980 1983	孟加拉	17.0 8.0
泰	國	RD6 KDML105	1977 1959	泰國	28.0 23.0
越	南	IR64	1985	IRRI	1.0
緬	甸	THEEDAT YIN SWETHWEYIN	1990 1985	IRRI IRRI	20.0 20.0
菲律	聿賓	IR64 PSBRC14	1985 1992	IRRI 菲律賓	30.0 12.0
巴基	斯坦	SUPER BASMATI	1996	巴基斯坦	60.0
東均	浦 寨	IR66	1987	IRRI	90.0

三、亞洲稻米增產的原因

就前段之稻米總產量與單位產量的增加趨勢而言,不可諱言,早期主要倚賴可耕地開發與種植面積的增加。然而,水稻育種的成就可說是提昇產量至關重要的作用。首先,60年代推展具有「半矮性基因」的矮桿品種,較早期老品種或一般高稈品種具有產量倍增的表現,延續至80年代初期,經由矮稈品種改良而來之增產幅度似乎達瓶頸

而趨緩和。其次,70年代中期,中國研發的「雜交水稻」開始商業化推廣,雜交稻的每公頃稻穀產量可達9~11公噸,至80年代中期已占中國總栽培面積的50%。IRRI亦於70年代末期與中國合作研發雜交稻,並稍後於90年代陸續於印度、菲律賓及越南等國家推展雜交稻品種試種,陸續獲得成功,並減緩原需倚賴進口稻米之國家資金壓力。

隨著雜交稻種植面積的增加,亞洲地 區的稻米總產量亦隨之增加。**21**世紀的全 亞洲,以中國的雜交稻生產面積最多,高達1,900萬公頃,占其國內一般灌溉稻田之70%(表7)。除中國之外,亞洲各國的雜交水稻生產以印度的110萬公頃居多,其次為越南的65萬公頃,菲律賓及孟加拉亦急起直追。由這些國家之雜交稻與灌溉稻的比

例看來,雜交稻在這些國家具有增加面積的 潛力,況且印度及越南本來就是稻米輸出大 國,雜交稻的生產對印、越兩國而言更是增 產的保證。菲律賓向來就是進口稻米大國, 擴張雜交稻的生產對菲國而言,應是解決其 糧食不足的王道。

表7.	2007年亞洲國家種植雜交水稻的面積	(1.000公頃)

國家	水稻面積	灌溉稻面積	雜交稻面積	雜交稻/灌溉稻(%)
印度	44,000	22,665	1,100	4.9
印 尼	12,165	7,037	130	1.8
孟加拉	11,200	4,263	300	7.0
越南	7,305	3,904	650	16.6
菲律賓	4,250	2,801	341	12.2
中國	29,230	27,004	19,000	70.4

雜交稻利用「雜種優勢」的原理提高稻 米的產量,但由於收穫的稻米屬於雜交第二 代,會產生分離現象,所以收穫雜交稻的稻 米品質會有「優劣相混雜」的情形。新的改 進方法在選擇雄不稔親與恢復親均具有相近 之直鏈澱粉含量等級(例如同為低直鏈澱粉 含量),但由於稻米品質的項目相當繁多, 無法每個項目均在同一等級上。再者,若親 緣太相近,「雜種優勢」的高產潛力就無法 顯現。雜交稻的另一限制因子,為生產稻 的成本太高,通常在雜交稻種的生產上,由 於只能收穫雄不稔親本植株上的種子,且其 稔實率不高,所以雜交稻種需每公頃至少生 產2公噸才具有經濟價值,目前僅中國與印 度可以達成。

四、結語

亞洲稻米生產量自二次戰後隨著栽培面積的增加而增加,60年代隨著奇蹟米-IR 8的推出,引領當時稻作生產的綠色革命,並帶來單位面積稻穀產量的提升,促使稻米總產量的增加以減緩持續增加的人口壓力。目前的亞洲地區人口已逼近40億人,可再增加的稻作栽培面積已達瓶頸,各國面對的稻米生產問題雖不盡相同,但持續開發高產新品種(譬如現階段最夯的雜交水稻),或提升現有栽培技術來增加稻米產能,以有效面對增加的人口壓力是亞洲各國共同面臨的糧食問題。